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Conductor Loss in Hollow Waveguides Using a

Surface Integral Formulation
Madhavan Swaminathan, Tapan K. Sarkar, Fellow, IEEE, Peter Petre, and Tanmoy Roy

Ahstrac&The power-loss method along with a surface inte-

gral formulation has been used to compute the attenuation con-
stant in hollow waveguides of arbitrary cross-section. An E-field

integral equation is developed for the surface electric currents

which is transformed into a matrix equation using the method
of moments. An iterative technique, i.e., Muller’s method is
used to obtain the relation between the propagation constant
and frequency. The attenuation constants have been calculated
and formulated for various waveguides and are in good agree-
ment with published data.

I. INTRODUCTION

N UMEROUS papers are available in the literature for

the analysis of waves propagating in hollow wave-

guides of arbitrary cross-section [ 1]-[4], Some of the pa-

pers in this area are the works done by Swaminathan et

al. [1], Spielman and Barrington [2], Bristol [3] and Kim

et al. [4]. These papers however deal with hollow wave-

guides made up of perfectly conducting walls supporting

waves at low frequencies. The work presented here is an

extension of [1] and deals with the computation of the

attenuation constant of hollow waveguides supporting

waves at high frequencies.

At millimeter wave frequencies, the finite conductivity

of the waveguide walls in hollow waveguides produces an

attenuation in the wave propagating in the waveguide. To

accurately characterize the hollow waveguide at milli-

meter wave frequencies, an estimate for the attenuation

constant is necessary. Since the finite conductivity of the

waveguide walls produces this attenuation, the conductiv-

ity of the waveguide walls has to be taken into consider-

ation while calculating the fields produced by the wave

propagating in the waveguide. As long as this conductor

loss is small, the power-loss method can be used to com-

pute the attenuation constant [5].

Using the surface equivalence principle the waveguide
walls are replaced by equivalent electric surface currents

radiating into free space. Enforcing the appropriate

boundary condition an E-field integral equation (EFIE) is

developed for these currents, Method of moments ([6])

with pulse expansion and point matching testing proce-
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dure is used to transform the integral equation into a ma-

trix one. The next step in the calculation of the attenuation

constant is to obtain a relationship between the propaga-

tion constant and frequency. For this purpose the matrix

equation is rearranged into a diferent form which contains

the minimum eigenvalue of the moment matrix.

An iterative technique, i.e., Muller’s method [7] is used

to find the frequency at which the minimum eigenvalue

goes to zero. The main advantages of this technique are

that it converges quadratically in the vicinity of a root,

does not require the evaluation of any derivatives, and

searches for complex roots even when those roots are not

simple.

Once the relationship between the propagation constant

and frequency is known, the fields inside and on the sur-

face of the waveguide are calculated using the eigenvector

pertaining to the minimum eigenvalue of the moment ma-

trix. This is necessa~ to compute the attenuation con-

stant. Normalized values of the attenuation constants have

been calculated and formulated for various waveguides.

A comparison has been made for a rectangular waveguide

and it has been found that our results are in very good

agreement with published data.

The power-loss method coupled with the surface inte-

gral formulation [1], [8] is used in this paper to analyze

hollow waveguides of arbitrary cross-section.

II. THEORY

The power-loss method which has been used in this pa-

per for calculating the attenuation constant assumes that

the losses are low at high frequencies. Hence it can be

safely assumed that the finite conductivity of the wave-

guide walls has only a small effect on the field configu-

ration within the waveguide. Due to the large conductiv-

ity of the waveguide walls, the magnetic field tangential

to the wall depends only slightly on the wall conductivity.

Thus the tangential magnetic field strength computed for

perfectly conducting walls remains the same when the

walls are assumed to have finite conductivity.

Based on the power-loss method [5], the attenuation

constant is defined as

(1)
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Fig. 1. Geometry of hollow waveguide,

where

In the above equations, P~ is the power lost per unit

length, P~ is the power transmitted, Elt,~ is the magnetic

field tangential to the waveguide walls assuming that the

walls are perfectly conducting, R~ is the surface resistance

of the guide walls, ~ is the electric field inside the wave-

guide and R* is the complex conjugate of the magnetic

field existing inside the waveguide. It is further assumed

that the wave propagates along the z-direction inside the

waveguide. In (1) 2 is the z-directed unit vector. As is

obvious from the above equations PL is given by a contour

integral along the contour (C) making up the cross-sec-

tion of the waveguide and P~ by a surface integral on the

cross-sectional surface area ($) of the waveguide (Fig.

1). The surface resistance R, at any angular frequency u

is given by

In (3), d is the propagation constant for a waveguide with

perfectly conducting walls.

The attenuation a can be computed from (1) by calcu-

lating P~ and PT. This can be a very cumbersome process

for waveguides with arbitrary cross-sections due to the

absence of any analytical expressions for the fields inside

the waveguide. This paper uses a surface integral tech-

nique to calculate the fields existing in the waveguide

made up of walls with finite conductivity.

III. SURFACE INTEGRAL FORMULATION

Consider a hollow conducting waveguide with arbitrary

cross-section and with infinite extension in the z-direction

(Fig, 1) which is the direction of propagation of the elec-

tromagnetic wave. The waveguide is completely filled

with homogeneous dielectric (air in the hollow wavegu ide

case) with permeability PO and permittivity CO.Since the

waveguide does not radiate into the surrounding medium

due to the presence of the perfectly conducting walls (a
~ m) the electric and magnetic fields at any point exter-

nal to the waveguide are zero.

Using the surface equivalence principle [9, ch. 3] the

original problem can be reduced to an equivalent one as

shown in Fig. 2.

Fig. 2(a) shows the original problem, where SCdenotes

the surface of a perfectly conducting cylinder which rep-

resents the hollow waveguide. The space surrounding the

cylinder is assumed to be free space and characterized by

the parameters (6., PO). The surface SC has unit normal

vector Z and unit tangent vector f which satisfy the fol-

lowing equation:

Fig. 2(b) shows the equivalent problem. The perfectly

conducting cylinder in Fig. 2(a) is now replaced by a sur-

face electric current J residing on SC. According to the

surface equivalence principle it is postulated that this cur-

rent produces the exact fields (E,.t, lli~t) inside the cyl-

inder and zero fields outside the cylinder. The magnitude

of this surface electric current is given by the disconti-

nuity of the tangential magnetic field on the surface of the

cylinder. Since the magnetic field outside the cylinder is

zero so,

7 = n x H(SJ (5)

4R,= ~ (2) where ~(Sc) is the magnetic field just inside the surface

SC, and ii is the unit outward normal vector to the surface

where KO is the free space permeability and cr is the con-
of the cylinder.

ductivity of the waveguide walls. Equation (1) represents
The electric current defined by (5) produces zero elec-

the formula for computing the attenuation constant of a
tric and magnetic fie~ds outside the cylinder and produces

hollow waveguide with finite cross-section and infinite
the original electric and magnetic fields inside the cylin-

along the direction of propagation.
der. Enforcing the condition that the scattered electric field

Due to attenuation of the wave traveling in the hollow
is zero just outside the cylinder an EFIE can be de\~el-

waveguide, the complex propagation constant is given by
oped:

‘y=a+ j/3 (3) ti X 27S(7) = Oon S~ (6)
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Fig. 2. (a) The original problem. (b) The equivalent problem.

where the explicit expression for the scattered electric field

is the following,

E’[j(i)] = ~+ (k: + Vv)
!J

~(p’)g(~, 7’) ds’.

SC

(7)

Here kO = w dpO eO is the free space wave number and

g(r, r’) = exp (–j/c OIr– r’ l)l(47rlr – r’ 1) is the three-

dimensional free space Green’s function.

Since TM, and TEZ modes can propagate in the wave-

guide, E represents the axial electric field for TM, modes

and represents the transverse electric field for TEZ modes.

In the following two sections, EFIE defined by (6) will

be rewritten and solved for both (TM, and TEZ) propa-

gating modes.

IV. TM FORMULATION

Let a TM, mode propagate in the waveguide. For this

case the equivalent surface current has only a z compo-

nent. Assuming an e ‘j8z behavior for waves along the

z-direction, the equivalent electric current has a

z-dependence,

.lj(x, y, z) = .lZ(x, y)e ‘jDz. (8)

Substituting (8) into (7) and taking only the z component

of the scattered field into account the integral equation (6)

can be rewritten in the following form,

E;(X> y, z) =
A(’’+4)A(XYZ) ‘“on”

(9)

where the magnetic vector potential AZ is given by

$ ~

w , e –Jk.lhd

A’(X, y, z) = #t’, y’) e –m —dz’dl’
—m 41rRJ~

(lo)

Here R~~ is the distance between the source and field

points,

R~~ = N/(x ‘x’)2 + (y ‘y ’)2 + (Z ‘Z’)2.

It is impotant to note that it is enough to take the z com-

ponent of the scattered electric field into account for the

integral (6) because the x and y components of the electric

and magnetic fields can be obtained from E, [10, ch. 9].

In (10) the value of the infinite integral can be given in

a closed form because,

Here KO is the zeroth order modified Bessel function of

the second kind: [11, p: 107], and R2d is the distance be-

tween the source and field points in an arbitra~ x-y plane

(Rz~ = J(x – X’)2 + ( y – y’ )2). Equation (11) can be

treated as the Fourier-transform of the three-dimensional

Green’s function for the z variable [12].

Since the propagation constant /3 is a real number (air-

filling is assumed), the modified Bessel function KO can

be expressed by the zeroth order Hankel function of the

second kind H$2) [13, p: 375],

KO[ jR2~ ~] = $ H~2’ [R2d ~]

if –Z
2

< arg (-) 5 r. (12)

Substituting (12) and (11) into (10) the expression for the

magnetic vector potential is given by

e ‘J~Z

A’(X, y, z) = —
4j +

~z(X’, y’ )@2)[R2d~] all’.
c

(13)

Suppressing the term e ‘JPZ in (13) and substituting it into

(9) the original integral equation can be rewritten into the
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Fig. 3. Segmentation of Candexpansion functions (TM case).

following form,

ES(X, y) = –u–B*z $ .), (x’, y’)H$2)
4UE0 c

o [Rzd~] dl’ = O on S;. (14)

Equation (14) is the integral equation pertaining to the

TMZ mode for the hollow waveguide.

A method of moments procedure is used to transform

the above integral equation into a matrix one. A pulse

expansion for the current .lZ along with a point matching

testing procedure is chosen here. The contour C, making

up the cross-section of the waveguide is replaced by a

number of linear segments (n) as shown in Fig. 3 with the

currents assumed to be constant on each segment [8].

Equation (14), after testing at the center of each linear

segment, reduces to the form:

“~]dl’=0 k=l,2, ””n (15)

In (15) the primed and unprimed variables represent the

source and field points respectively, Zi represents the ith

expansion coefficient for the current and (x~, y~) are the

coordinates of the kth matching point. The rest of the

quantities are as defined in Fig. 3.

At a fixed propagation constant ~ and angular fre-

quency ~, (15) reduces to the matrix equation which can

be solved for the expansion coefficients,

[z] [7] = [0] (16)

where Z is the impedance matrix and 1 is the vector con-

taining the expansion coefficients,

V. TE FORMULATION

Let a TEZ mode prc)pagate in the waveguide. For this

case the equivalent surface current has x, y and z com-

ponents, while the scattered electric field has x and y com-

ponents only. As in the previous section, assuming the

e ‘~~z dependence for the wave along the z-direction and

making a separation according to the transverse and axial

directions, (7) can be rewritten into the following coupled

form,

In the above equations AZ and Al are the axial and trans-

verse components of the magnetic vector potential and ~f

is the transverse del operator defined by (18),

(18)

The explicit expressions for Az and Al are equations (10)

and (19), respectively,

$ !
w

z~= 71(X’, y’)
e –jk.R3d

~ –J(3Z’ — dz’ all’. (19)
c —w 41rR3d

Because for the TEZ propagation mode the electric field

has no axial component, in (17a) E; must be zero. Equat-

ing the right side of equation (17a) to zero the z compo-

nent of the magnetic vector potential Az can be expressed

by the transverse component of the magnetic vector po-

tential Xl,

(20)

Substituting (20) into equation ( 17b) the transverse com-

ponent of the electric field can be expressed only by the

transverse component of the equivalent current via the

magnitude vector potential A 1,

[
l?~=-jupo 2,+ z

l––– 1(kO - 62) ‘[(v’A’) “ ’21)

Following the same idea as in the previoui section, the

infinite integral in equation (19) can be given in a closed

form,

Substituting (22) into (21

(22)

, suppressing the term e ‘Joz

and executing some straightforward manipulations (21)

can be rewritten in the form,

Up. ——
.2 vl

+4(k~– /3) c
~’~,(x’, y’)H$)

“ [Rz~Jk; – /32] all’. (23)
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Enforcing the boundary condition,

the following EFIE is obtained for TEZ mode propagation,

7(X, y) E~[71(x,y)] = O on C. (25)

In (25) t(x, y) is the unit tangent vector defined by (4) and

E; is the transverse component of the scattered electric

field given by (23).

As in the previous section a method of moments pro-

cedure is used to transform the integral (25) into a matrix

one. A pulse expansion for the current ,11 along with a

point matching testing procedure is chosen. The contour

C, making up the cross-section of the waveguide is re-

placed by a number of linear segments (n) as shown in

Fig. 3. It is important to note that an approximation is

made while choosing the expansion functions for the di-

vergence of the electric current in (23). Since the diver-

gence of a pulse function are two delta functions, the term

containing the divergence of the current should be ex-

panded in terms of delta functions. Instead of representing

it in this form an approximation is made such that the

divergence of the electric current is expanded in terms of

pulse doublets in such a way that the moment of the pulse

doublets is equal to the magnitude of the delta function

[8]. Choosing a set of delta functions for weighting func-

tions, (23) reduces to the numerical form,

“ {H!)[ Jxkw 1/2 – X’)z + (y~+l/2 – y’)z]

“ [J(xk +*/2 – X’)2 + (yk+l/2 – y)z

“ ~]} dl’ = O. (26)

In (26) a finite difference approximation for the transverse

del operator is used. Here lk and the 1/ represent the unit

directional vectors for the kth and i th elements respec-

tively, 1, represents the expansion coefficient for the cur-

rent and (xk, yk) are the coordinates of the k th matching

point. The rest of the quantities are as defined in Fig. 4.

At a fixed propagation constant /3 and angular fre-

quency co, (26) reduces to the matrix equation ( 16), which

can be solved for the expansion coefficients.

VI. ELECTROMAGNETIC FJELDS DISTRIBUTION

The first step in the calculation of the attenuation con-

stant (a) is to obtain a relation between the propagation

constant ((1) and angular frequency (o). The wavenumber

kOappears as an argument in the matrix equations (15) and

rk = Xki + ykj

k = L 2, ....n

1992

x

rifr)

m

1
a = 2(li-1 – li_3,2)

b 1
b = 2(li_1,2 – li_l)

a

I * 1’
li_3,z Ii-l li_1,2 Ii 1i+ 1/2

c
1

c = – 2(11– li_l,*)

d 1
d = – 2(li+ 1,2 – Ii)

Fig. 4. Segmentation of C and expansion functions (TE case).

(26). For a non-trivial solution to exist for the vector Z,

the moment matrix Z has to be singular [1]. Hence

det [~] = O. (27)

A numerically robust way of finding the value of kO at

which the determinant becomes zero is to find the smallest

eigenvalue. For this computational purpose the matrix

equation (15) and (26) can be rewritten into the following

forms,

ZT = h~i~~ (28)

where k~i~ is the minimum eigenvalue of the matrix Z and

Z is the corresponding eigenvector. Assuming /3 is fixed,
then the angular frequency u at which h~i~ is the smallest

one gives a relation between ~ and o. Since the range for

~ is known (O < /3 s kO), the relation can easily be found.

Because the moment matrix Z is unsymmetric and com-

plex and the eigenvalues are also complex, the absolute

value of the minimum eigenvalue is used in the algorithm

for finding the relation between P and u.

The Muller’s method is used to find the angular fre-

quency ~ at which h~,. goes to zero [7]. This method is

an iterative technique which converges quadratically in

the vicinity of a root, does not require the evaluation of

any derivatives and searches for complex roots even when
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these roots are not simple. A detailed explanation about

the algorithm for obtaining the relation between 6 and w

using Muller’s methocl can be found in [l], [7].

Once the ~-u relation is known, the next step in the

computation of a is the calculation of the electromagnetic

fields inside and on the surface of the waveguide. This is

necessary to compute PL and PT.

In (28) Z represents the eigenvector corresponding to

the minimum eigenvalue h~i.. Hence Z represents the

equivalent current coefficients producing the exact fields

inside and on the surface of the waveguide. This vector

can therefore be used to calculate the fields.

TM Fields

The various components of the electric and magnetic

fields produced by a TMZ wave propagating in the wave-

guide can be obtained from the eigenvector Z via the Max-

well’s equation,

(29)

and via the equation which defines the magnetic vector

potential (A),

(30)

TE Fields

The electromagnetic field produced inside the holllow

waveguide for a TEZ mode propagating in the waveguide

can be calculated from the eigenvector Z via MaxwcJl’s

equation,

i7=– +vxz) (33)
jupO

and (30).
Since a TEZ wave propagates in the waveguide, the

electric field has zero longitudinal component. After ex-

panding the equivalent electric current (~1) by pulse basis

functions and executing some simple and straigl ,forward

manipulations the various components of the electric and

magnetic fields become

EZ=O (34a)

Since a TM, wave propagates in the waveguide, the mag-
(34b)

netic field has no longitudinal (z) component. After ex-

panding the equivalent electric current (.lZ) by pulse basis HZ = ~,;, Z, ~~_, (; E’,) H\2)

functions and making some simplifications, the various

components of the electric and magnetic fields become, . [R2~~] dl’ (34C)

HZ=O (31a)

(31b)

~L=m’ 1’ J(x – x’) – Z(y – y’)

4j ,2, ‘i j,,_, R

“ Hi’) [R2. ~] dl’ (3 lC)

(31d)

In the above equations R2d represents the distance be-

tween the source and field points, x and y represent the x-

and y-directed unit vector, respectively and H\’) is the first

order Hankel function of the second kind. Here Zi is the

i th component of the eigenvector Z.

The tangential component of the magnetic field on the

surface of the waveguide is given by the electric currents,

(32)

where J is given by the eigenvector and ii is the unit out-

ward normal vector to the surface of the waveguide.

In the above equations 1: is the tangential unit vector on

the i th subsection, and fi[ is the unit outward normal on

the ith subsection. The tangential magnetic field on the

surface of the waveguide is given by (32).

VII. NUMERICAL RESULTS

After determining the various components of the elec-

tric and magnetic fields produced by either TM, or TEZ

wave propagating in the waveguide, the attenuation con-

stant can be calculated using (1).

Since the zeroth order Hankel function of the seccmd

kind (H$2)) has been used to determine the various com-

ponents of the electromagnetic fields, they turn out to be

complex quantities. However, as is well known, the fields

inside a hollow waveguide are real quantities. Hence the

electric and magnetic fields inside and on the surface of
the waveguide have been normalized with respect to the

largest one (in magnitude) existing at any point. This en-

sures that the electromagnetic fields produced by the wawe

propagating in the waveguide are no longer complex.

The attenuation constant which is given by (1) is not

affected by this normalization. Equation (12) can be re-
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Fig. 5. Rectangular waveguide

written in the form,

P,n

a = 2Ptn
(35)

where Pl, and Pt. are the normalized power lost per unit

length and normalized power transmitted, respectively.

The explicit expressions for them are the following,

(36a)

(36b)

In the above equations Htan,. is the normalized magnetic

field tangential to the waveguide walls assuming that the

walls are perfectly conducting, E. is the normalized elec-

tric field inside the waveguide and H; is the complex con-

jugate of the normalized magnetic field existing inside the

waveguide,

A mesh was generated and superimposed on the wave-

guide. The electric and magnetic fields were computed at

discrete points inside and on the surface of the wave-

guide. The field distributions were then integrated to com-

pute Pln and P,.. The unit for CYin all the results provided

is in nepers/unit length.
The first result pertains to a rectangular hollow wave-

guide with dimensions a = 2 cm and b = 1 cm (Fig. 5).

The results obtained for a using the power-loss method

along with a surface integral formulation have been com-

pared with analytical results given in [5] for the wave-

guide shown in Fig. 5. The attenuation constant computed

for the first TM, and first TEZ mode propagating in the

waveguide are shown in Fig. 6. The attenuation constant

a has been normalized with respect to the surface resis-

tance R, to yield a more useful and more general diagram.

In Fig. 6, this normalized attenuation constant u/R, can

be seen as a function of frequency. The cutoff frequency

fc for the TMZ mode is 16.77 GHz and for the TEZ mode
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Fig. 6. Normalized attenuation constant for the rectangular waveguide as
a function of frequency.
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function of frequency.
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is 7.5 GHz. The results obtained using the surface integral

method compare very well with the analytical results.

The next example pertains to an L-shaped hollow wave-

guide. The precise geometry with the dimensions are

given in Fig. 7. For this geometry there is no analytical

results available. The normalized attenuation constant for

the first TMZ mode as a function of frequency are shown

in Fig. 8. The cutoff frequency ~C for the TMZ mode is

23.328 GHz and for the TEZ mode is 9.033 GHz. The

shape of the curves in Fig. 8 are the same as in Fig. 6,

which means a similar behavior of the attenuation con-

stant for the L-shaped waveguide as for the rectangular

waveguide.

VIII. SUMMARY AND CONCLUSION

The power-loss method coupled with the surface inte-

gral formulation has been used to compute the attenuation

constant in hollow waveguides of arbitrary cross-section.

A simple point-matching testing procedure with pulse ex-

pansion functions has been chosen to transform the inte-

gral equation into a matrix one. A fast iterative technique

has been developed to obtain the relation between the

propagation constant and frequency. Both TE and TM

cases have been considered. The numerical results show

agreement with available analytical results.
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