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Conductor Loss in Hollow Waveguides Using a
Surface Integral Formulation
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Abstract—The power-loss method along with a surface inte-
gral formulation has been used to compute the attenuation con-
stant in hollow waveguides of arbitrary cross-section. An E-field
integral equation is developed for the surface electric currents
which is transformed into a matrix equation using the method
of moments. An iterative technique, i.e., Muller’s method is
used to obtain the relation between the propagation constant
and frequency. The attenuation constants have been calculated
and formulated for various waveguides and are in good agree-
ment with published data.

I. INTRODUCTION

UMEROUS papers are available in the literature for

the analysis of waves propagating in hollow wave-
guides of arbitrary cross-section [1]-[4]. Some of the pa-
pers in this area are the works done by Swaminathan et
al. [1], Spielman and Harrington [2], Bristol [3] and Kim
et al. [4]. These papers however deal with hollow wave-
guides made up of perfectly conducting walls supporting
waves at low frequencies. The work presented here is an
extension of [1] and deals with the computation of the
attenuation constant of hollow waveguides supporting
waves at high frequencies.

At millimeter wave frequencies, the finite conductivity
of the waveguide walls in hollow waveguides produces an
attenuation in the wave propagating in the waveguide. To
accurately characterize the hollow waveguide at milli-
meter wave frequencies, an estimate for the attenuation
constant is necessary. Since the finite conductivity of the
waveguide walls produces this attenuation, the conductiv-
ity of the waveguide walls has to be taken into consider-
ation while calculating the fields produced by the wave
propagating in the waveguide. As long as this conductor
loss is small, the power-loss method can be used to com-
pute the attenuation constant [5].

Using the surface equivalence principle the waveguide
walls are replaced by equivalent electric surface currents
radiating into free space. Enforcing the appropriate
boundary condition an E-field integral equation (EFIE) is
developed for these currents, Method of moments ([6])
with pulse expansion and point matching testing proce-
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dure is used to transform the integral equation into a ma-
trix one. The next step in the calculation of the attenuation
constant is to obtain a relationship between the propaga-
tion constant and frequency. For this purpose the matrix
equation is rearranged into a diferent form which contains
the minimum eigenvalue of the moment matrix.

An iterative technique, i.e., Muller’s method [7] is used
to find the frequency at which the minimum eigenvalue
goes to zero. The main advantages of this technique are
that it converges quadratically in the vicinity of a root,
does not require the evaluation of any derivatives, and
searches for complex roots even when those roots are not
simple.

Once the relationship between the propagation constant
and frequency is known, the fields inside and on the sur-
face of the waveguide are calculated using the eigenvector
pertaining to the minimum eigenvalue of the moment ma-
trix. This is necessary to compute the attenuation con-
stant. Normalized values of the attenuation constants have
been calculated and formulated for various waveguides.
A comparison has been made for a rectangular waveguide
and it has been found that our results are in very good
agreement with published data.

The power-loss method coupled with the surface inte-
gral formulation [1], [8] is used in this paper to analyze
hollow waveguides of arbitrary cross-section.

II. THEORY

The power-loss method which has been used in this pa-
per for calculating the attenuation constant assumes that
the losses are low at high frequencies. Hence it can be
safely assumed that the finite conductivity of the wave-
guide walls has only a small effect on the field configu-
ration within the waveguide. Due to the large conductiv-
ity of the waveguide walls, the magnetic field tangential
to the wall depends only slightly on the wall conductivity.
Thus the tangential magnetic field strength computed for
perfectly conducting walls remains the same when the
walls are assumed to have finite conductivity.

Based on the power-loss method [5], the attenuation
constant is defined as

Py
o = —=

2P, &
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Fig. 1. Geometry of hollow waveguide.

where

Py = 3R, <§> |Hyaol® di

H Re (E x H*) - 7 ds.

Sa

PT=

=

In the above equations, P, is the power lost per unit
length, Py is the power transmitted, H,,, is the magnetic
field tangential to the waveguide walls assuming that the
walls are perfectly conducting, R, is the surface resistance
of the guide walls, E is the electric field inside the wave-
guide and H* is the complex conjugate of the magnetic
field existing inside the waveguide. It is further assumed
that the wave propagates along the z-direction inside the
waveguide. In (1) Z is the z-directed unit vector. As is
obvious from the above equations Py is given by a contour
integral along the contour (C) making up the cross-sec-
tion of the waveguide and Py by a surface integral on the
cross-sectional surface area (S,) of the waveguide (Fig.
1). The surface resistance R; at any angular frequency w
is given bv

Wiy

R, =
20

@

where u, is the free space permeability and o is the con-
ductivity of the waveguide walls. Equation (1) represents
the formula for computing the attenuation constant of a
hollow waveguide with finite cross-section and infinite
along the direction of propagation.

Due to attenuation of the wave travelling in the hollow
waveguide, the complex propagation constant is given by

y=o+jb ©)
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In (3), 8 is the propagation constant for a waveguide with
perfectly conducting walls.

The attenuation « can be computed from (1) by calcu-
lating P; and Py7. This can be a very cumbersome process
for waveguides with arbitrary cross-sections due to the
absence of any analytical expressions for the fields inside
the waveguide. This paper uses a surface integral tech-
nique to calculate the fields existing in the waveguide
made up of walls with finite conductivity.

III. SURFACE INTEGRAL FORMULATION

Consider a hollow conducting waveguide with arbitrary
cross-section and with infinite extension in the z-direction
(Fig. 1) which is the direction of propagation of the elec-
tromagnetic wave. The waveguide is completely filled
with homogeneous dielectric (air in the hollow waveguide
case) with permeability p, and permittivity ¢,. Since the
waveguide does not radiate into the surrounding medium
due to the presence of the perfectly conducting walls (o
— oo0) the electric and magnetic fields at any point exter-
nal to the waveguide are zero.

Using the surface equivalence principle [9, ch. 3] the
original problem can be reduced to an equivalent one as
shown in Fig. 2.

Fig. 2(a) shows the original problem, where S, denotes
the surface of a perfectly conducting cylinder which rep-
resents the hollow waveguide. The space surrounding the
cylinder is assumed to be free space and characterized by
the parameters (e,, u,). The surface S, has unit normal
vector 7 and unit tangent vector  which satisfy the fol-
lowing equation:

AXt=3% @)

Fig. 2(b) shows the equivalent problem. The perfectly
conducting cylinder in Fig. 2(a) is now replaced by a sur-
face electric current J residing on S,. According to the
surface equivalence principle it is postulated that this cur-
rent produces the exact fields (E,,, H,,) inside the cyl-
inder and zero fields outside the cylinder. The magnitude
of this surface electric current is given by the disconti-
nuity of the tangential magnetic field on the surface of the
cylinder. Since the magnetic field outside the cylinder is
Zero so,

J =7 x H(ES,) 5)

where H(S,) is the magnetic field just inside the surface
S., and 7 is the unit outward normal vector to the surface
of the cylinder.

The electric current defined by (5) produces zero elec-
tric and magnetic fields outside the cylinder and produces
the original electric and magnetic fields inside the cylin-
der. Enforcing the condition that the scattered electric field
is zero just outside the cylinder an EFIE can be devel-
oped:

X E({J)=0onS} (6)
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Fig. 2. (a) The original problem. (b) The equivalent problem.

where the explicit expression for the scattered electric field
is the following,

E*[T(7)] =ji k% +VV) SS J(7)g(F, 7') ds'.
o Sc

Q)

Here k, = wvp,¢, is the free space wave number and
g(r, r') = exp (—jk,|r — r'|)/(4x|r — r']) is the three-
dimensional free space Green’s function.

Since TM, and TE, modes can propagate in the wave-
guide, E represents the axial electric field for TM, modes
and represents the transverse electric field for TE, modes.
In the following two- sections, EFIE defined by (6) will
be rewritten and solved for both (TM, and TE,) propa-
gating modes.

IV. TM FORMULATION

Let a TM, mode propagate in the waveguide. For this
case the equivalent surface current has only a z compo-
nent. Assuming an e % behavior for waves along the
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z-direction, the equivalent electric current has a
z-dependence,

Ji&x, ¥, 2) = J(x, y)e 7= ®)

Substituting (8) into (7) and taking only the z component
of the scattered field into account the integral equation (6)
can be rewritten in the following form,

1 8?
Ei(x,y,2) =j <k(2, + —> A (x,y,z2) =0on S;
w

o z*
9
where the magnetic vector potential 4, is given by
® ¢ JkoRaa
Ax,y,2) = (§c J.x'y) S_w e P o dz’ dl’
(10)

Here R, is the distance between the source and field
points,

Ry=~va—-xV+(y—-yP?+G—2)7
It is impotant to note that it is enough to take the z com-
ponent of the scattered electric field into account for the
integral (6) because the x and y components of the electric
and magnetic fields can be obtained from £, [10, ch. 9].

In (10) the value of the infinite integral can be given in
a closed form because,

B . e—jkode e*}ﬁz
S e e = S KRBT — k1. (D)
— o 7!'R3d 271'

Here K, is the zeroth order modified Bessel function of
the second kind: [11, p: 107], and R,, is the distance be-
tween the source and field points in an arbitrary x-y plane
(Ryy = Vx — x')* + (y — y')?). Equation (11) can be
treated as the Fourier-transform of the three-dimensional
Green’s function for the z variable [12].

Since the propagation constant 3 is a real number (air-
filling is assumed), the modified Bessel function K, can
be expressed by the zeroth order Hankel function of the
second kind H? [13, p: 375],

. T
K,[jRouVk: — B2] = 2—}.H§2)[R2d\/k3 - 87

if —g < arg (VkZ = B2) = . (12)

Substituting (12) and (11) into (10) the expression for the
magnetic vector potential is given by

éclz(x’, YYHP [Ryu~Nky — 821 dl".

(13)

Suppressing the term e % in (13) and substituting it into
(9) the original integral equation can be rewritten into the

—~Jfz

4j

A,x,y, 2 =
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Fig. 3. Segmentation of C and expansion functions (TM case).

following form,

—6

Eix,y) = § J.x', y)HP

: [de«/ko —B%1dl’ =00nS!. (14)

Equation (14) is the integral equation pertaining to the
TM, mode for the hollow waveguide.

A method of moments procedure is used to transform
the above integral equation into a matrix one. A pulse
expansion for the current J, along with a point matching
testing procedure is chosen here. The contour C, making
up the cross-section of the waveguide is replaced by a
number of linear segments (n) as shown in Fig. 3 with the
currents assumed to be constant on each segment [8].
Equation (14), after testing at the center of each linear
segment, reduces to the form:

2 2

(k4 D S HP [N = x') + (3 = y')

WE, i=1 h-1

VK2 = B8%1di' =0

In (15) the primed and unprimed variables represent the
source and field points respectively, I; represents the ith
expansion coefficient for the current and (x;, y,) are the
coordinates of the kth matching point. The rest of the
quantities are as defined in Fig. 3.

At a fixed propagation constant § and angular fre-
quency w, (15) reduces to the matrix equation which can
be solved for the expansion coefficients,

[Z1[1]1 = [0] (16)

where Z is the impedance matrix and [ is the vector con-
taining the expansion coeflicients.

k=1,2,---n (15)

V. TE FORMULATION

Let a TE, mode propagate in the waveguide. For this
case the equivalent surface current has x, y and z com-
ponents, while the scattered electric field has x and y com-
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ponents only. As in the previous section, assuming the
e % dependence for the wave along the z-direction and
making a separation according to the transverse and axial
directions, (7) can be rewritten into the following coupled
form,

1, . ——
Ej = — {—jBV, A4, + (ki —
JweE,

B8HA,} (17a)

Ej =

— {(ko + V,V)A4, — jBV,4;}.  (I7Th)
Jwe,
In the above equations 4, and A, are the axial and trans-
verse components of the magnetic vector potential and V,
is the transverse del operator defined by (18),
= a a
Vi=%—+y—.
TR T Y%y
The explicit expressions for A, and A; are equations (10)

and (19), respectively,

(18)

A = Jix',y e ™
! c 1y . 4nRu

Because for the TE, propagation mode the electric field
has no axial component, in (17a) E; must be zero. Equat-
ing the right side of equation (17a) to zero the z compo-
nent of the magnetic vector potential 4, can be expressed
by the transverse component of the magnetic vector po-
tential A,

dz' dl’.  (19)

A VA, (20)

z = J 62
Substituting (20) into equation (17b) the transverse com-
ponent of the electric field can be expressed only by the
transverse component of the equivalent current via the
magnitude vector potential A,
— — 1 —
Ej = — jou, | A vi(vi4A) . (21
i ]wﬂ[l - B)l(ll)ji 2D
Following the same idea as in the previous section, the
infinite integral in equation (19) can be given in a closed
form,

PR
4j

g§> T, y)YHD Ry N2 — B21 dl'.
C

(22)

Substituting (22) into (21), suppressing the term e 7%
and executing some straightforward manipulations (21)
can be rewritten in the form,

] =

T ) 7 ’ ’ y
Ej = - f <§>CJI(x,y YHP[Ry Nk — B*] dl

Who VA ’ ' 2)
— " v, H;
4(k2 B ) v, §C &',y

* [RygVkg — B2] dl". (23)
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Enforcing the boundary condition,

fixE(J)=0onS. (24)

the following EFIE is obtained for TE, mode propagation,

i(x, WE][Ji(x, y)] = 0on C. (25)
In (25) t(x, y) is the unit tangent vector defined by (4) and
E; is the transverse component of the scattered electric
field given by (23).

As in the previous section a method of moments pro-
cedure is used to transform the integral (25) into a matrix
one. A pulse expansion for the current J; along with a
point matching testing procedure is chosen. The contour
C, making up the cross-section of the waveguide is re-
placed by a number of linear segments (n) as shown in
Fig. 3. It is important to note that an approximation is
made while choosing the expansion functions for the di-
vergence of the electric current in (23). Since the diver-
gence of a pulse function are two delta functions, the term
containing the divergence of the current should be ex-
panded in terms of delta functions. Instead of representing
it in this form an approximation is made such that the
divergence of the electric current is expanded in terms of
pulse doublets in such a way that the moment of the pulse
doublets is equal to the magnitude of the deita function
[8]. Choosing a set of delta functions for weighting func-
tions, (23) reduces to the numerical form,

n I
w —
-2 T SZ GLHP NG = x' + (i =y
= =1
. Wi znJ l+1y2
N/ - dl — —5—2— I,S I,
ko — B8] e =gy b ) )
' {HEJZ)[\/;CIH-I/,’Z - X’)2 + (Vevt/2 — )")2]
- Nky - B> — HY
: [‘[(xkﬂ/z - x') + (Yks1/2 — y)?
- Nk~ 81} dl' = 0. (26)

In (26) a finite difference approximation for the transverse

del operator is used. Here [ and the I! represent the unit
directional vectors for the kth and ith elements respec-
tively, 1, represents the expansion coefficient for the cur-
rent and (x;, y,) are the coordinates of the kth matching
point. The rest of the quantities are as defined in Fig. 4.

At a fixed propagation constant 8 and angular fre-
quency w, (26) reduces to the matrix equation (16), which
can be solved for the expansion coefficients.

VI. ELECTROMAGNETIC FIELDS DISTRIBUTION

The first step in the calculation of the attenuation con-
stant (o) is to obtain a relation between the propagation
constant (3) and angular frequency (w). The wavenumber
k, appears as an argument in the matrix equations (15) and
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Fig. 4. Segmentation of C and expansion functions (TE case).

(26). For a non-trivial solution to exist for the vector I,
the moment matrix Z has to be singular [1]. Hence

det [Z] = 0. 27)

A numerically robust way of finding the value of k, at
which the determinant becomes zero is to find the smallest
eigenvalue. For this computational purpose the matrix
equation (15) and (26) can be rewritten into the following
forms,

ZI = Nyl (28)

where A\, is the minimum eigenvalue of the matrix Z and
I is the corresponding eigenvector. Assuming 3 is fixed,
then the angular frequency w at which Ay, is the smallest
one gives a relation between 8 and w. Since the range for
Bis known (0 < § < k), the relation can easily be found.
Because the moment matrix Z is unsymmetric and com-
plex and the eigenvalues are also complex, the absolute
value of the minimum eigenvalue is used in the aigorithm
for finding the relation between 8 and w.

The Muller’s method is used to find the angular fre-
quency w at which Ay, goes to zero [7]. This method is
an iterative technique which converges quadratically in
the vicinity of a root, does not require the evaluation of
any derivatives and searches for complex roots even when
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these roots are not sirnple. A detailed explanation about
the algorithm for obtaining the relation between 8 and w
using Muller’s method can be found in [1], [7].

Once the §-w relation is known, the next step in the
computation of « is the calculation of the electromagnetic
fields inside and on the surface of the waveguide. This is
necessary to compute P; and Pr.

In (28) I represents the eigenvector corresponding to
the minimum eigenvalue Ag;,. Hence I represents the
equivalent current coefficients producing the exact fields
inside and on the surface of the waveguide. This vector
can therefore be used to calculate the fields.

TM Fields

The various components of the electric and magnetic
fields produced by a TM, wave propagating in the wave-
guide can be obtained from the eigenvector I via the Max-
well’s equation,

E = (V x H) (29)

Jwe,

and via the equation which defines the magnetic vector
potential (4),

H=V x 4. (30)
Since a TM, wave propagates in the waveguide, the mag-
netic field has no longitudinal (z) component. After ex-
panding the equivalent electric current (J,) by pulse basis
functions and making some simplifications, the various
components of the electric and magnetic fields become,

H,=0 (31a)
() z"; S JE 8 ar

E, = — dooe i=11i l_.Ho [Rygvky — B7°]1dl
(31b)

2 2y n i = ' = '
H=V(ko‘5)21_gl e —x) =Xy —y)
! 4j =1 Jno R
- HP[RyyVkZ — B*1dl’ (1)
- B =

E = -——3zx T, (31d)

we,

In the above equations R,; represents the distance be-
tween the source and field points, x and y represent the x-
and y-directed unit vector, respectively and H is the first
order Hankel function of the second kind. Here I, is the
ith component of the eigenvector 1.

The tangential component of the magnetic field on the
surface of the waveguide is given by the electric currents,

Hop = —nxJ (32)

where J is given by the eigenvector and 7 is the unit out-
ward normal vector to the surface of the waveguide.
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TE Fields

The electromagnetic field produced inside the hollow
waveguide for a TE, mode propagating in the waveguide
can be calculated from the eigenvector I via Maxwell’s
equation,

1
Jor,

H= - (V X E) (33)
and (30).

Since a TE, wave propagates in the waveguide, the
electric field has zero longitudinal component. After ex-
panding the equivalent electric current (J;) by pulse basis
functions and executing some simple and straigl . forward
manipulations the various components of the electric and
magnetic fields become

E =0

n ll
E = w:() Zl I; S L HP [RyNk, — B2 dl’
1= -1

(34a)

n hviy2

‘ Who 2 S I}
_—— I | ANCLD)
4k — g7 i=1 h-1/2 (

vy —_ 1 +'— _ 12
e = X) YO ) porg,, k2= 7 dlf

R
(34b)
ki —B% 2 S" R
H=— I - 7. 2)
r4 4j i§l H ot <Rn1>H

* [Rygvk% — B dl’ (34¢)
— B __ =
Hl = zZ X E]- (34d)

Wity

In the above equations [/ is the tangential unit vector on
the ith subsection, and 7, is the unit outward normal on
the ith subsection. The tangential magnetic field on the
surface of the waveguide is given by (32).

VII. NuMericAL RESULTS

After determining the various components of the elec-
tric and magnetic fields produced by either TM, or TE,
wave propagating in the waveguide, the attenuation con-
stant can be calculated using (1).

Since the zeroth order Hankel function of the second
kind (H f,z)) has been used to determine the various com-
ponents of the electromagnetic fields, they turn out to be
complex quantities. However, as is well known, the fields
inside a hollow waveguide are real quantities. Hence the
electric and magnetic fields inside and on the surface of
the waveguide have been normalized with respect to the
largest one (in magnitude) existing at any point. This en-
sures that the electromagnetic fields produced by the wave
propagating in the waveguide are no longer complex.

The attenuation constant which is given by (1) is not
affected by this normalization. Equation (12) can be re-
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Fig. 5. Rectangular waveguide.
written in the form,
P, In
o= 35
2P, )

where Pj, and P, are the normalized power lost per unit
length and normalized power transmitted, respectively.
The explicit expressions for them are the following,

n = 2R <S?C | Hu, o dl (362)

Py3 H Re (E, X H¥)Z ds. (36b)
S

In the above equations H,,, , is the normalized magnetic
field tangential to the waveguide walls assuming that the
walls are perfectly conducting, E,, is the normalized elec-
tric field inside the waveguide and H [ is the complex con-
jugate of the normalized magnetic field existing inside the
waveguide.

A mesh was generated and superimposed on the wave-
guide. The electric and magnetic fields were computed at
discrete points inside and on the surface of the wave-
guide. The field distributions were then integrated to com-
pute Py, and P,. The unit for « in all the results provided
is in nepers/unit length.

The first result pertains to a rectangular hollow wave-
guide with dimensions ¢ = 2 cm and » = 1 cm (Fig. 5).
The results obtained for « using the power-loss method
along with a surface integral formulation have been com-
pared with analytical results given in [5] for the wave-
guide shown in Fig. 5. The attenuation constant computed
for the first TM, and first TE, mode propagating in the
waveguide are shown in Fig. 6. The attenuation constant
o has been normalized with respect to the surface resis-
tance R, to yield a more useful and more general diagram.
In Fig. 6, this normalized attenuation constant « /R, can
be seen as a function of frequency. The cutoff frequency
£ for the TM, mode is 16.77 GHz and for the TE, mode
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SWAMINATHAN et al.: CONDUCTOR LOSS IN HOLLOW WAVEGUIDES

is 7.5 GHz. The results obtained using the surface integral
method compare very well with the analytical results.

The next example pertains to an L-shaped hollow wave-
guide. The precise geometry with the dimensions are
given in Fig. 7. For this geometry there is no analytical
results available. The normalized attenuation constant for
the first TM, mode as a function of frequency are shown
in Fig. 8. The cutoff frequency f, for the TM, mode is
23.328 GHz and for the TE, mode is 9.033 GHz. The
shape of the curves in Fig. 8 are the same as in Fig. 6,
which means a similar behavior of the attenuation con-
stant for the L-shaped waveguide as for the rectangular
waveguide.

VIII. SUMMARY AND CONCLUSION

The power-loss method coupled with the surface inte-
gral formulation has been used to compute the attenuation
constant in hollow waveguides of arbitrary cross-section.
A simple point-matching testing procedure with pulse ex-
pansion functions has been chosen to transform the inte-
gral equation into a matrix one. A fast iterative technique
has been developed to obtain the relation between the
propagation constant and frequency. Both TE and TM
cases have been considered. The numerical results show
agreement with available analytical results.
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